VOlUME 03 ISSUE 11 NOVEMBER 2024
1Ismail Ujaimi, 2Rabab Alsaigh, 3Majid Alfelfel, 4Raed Algallaf
1,2,3,46660 Abu Al Wadr Al Mazini - Al Wahah Dist. - Al Qatif 32626 - 2788 - Kingdom of Saudi Arabia
DOI : https://doi.org/10.58806/ijsshmr.2024.v3i11n18Google Scholar Download Pdf
ABSTRACT
This paper examines the integration of Artificial Intelligence (AI) within the Saudi Arabian construction industry, addressing key challenges, potential solutions, and its transformative potential. With Saudi Arabia’s Vision 2030 emphasizing technological innovation and economic diversification, the construction sector stands to benefit significantly from AI-driven advancements that improve productivity and enhance project management. Key challenges identified include technical barriers, such as data quality issues, complex system integration, and the limited availability of specialized AI tools. Additionally, regulatory hurdles related to compliance and data privacy, high implementation costs, limited ROI, and social resistance driven by job displacement fears and lack of AI familiarity pose significant obstacles. A survey conducted among industry professionals confirmed these challenges, highlighting difficulties in AI system integration, economic concerns about costs and talent shortages, and regulatory uncertainties. Social resistance to AI adoption also emerged as a critical barrier, underscoring the need for workforce training and change management strategies to foster acceptance. The paper proposes targeted solutions, including improving data integration capabilities, establishing comprehensive regulatory frameworks, providing financial incentives, and offering training programs to build AI-related expertise. Case studies and hypothetical scenarios illustrate AI’s potential benefits, such as optimizing resource allocation, enhancing safety, reducing costs, and streamlining project timelines. Government-backed initiatives like King Salman Energy Park (SPARK) emphasize the importance of infrastructure and state support in facilitating AI adoption across industries. These efforts align with national goals to transform construction practices and drive innovation. The findings demonstrate AI’s potential to revolutionize the construction sector, but overcoming existing challenges requires continuous collaboration between industry stakeholders, policymakers, and technology providers. Further research is necessary to validate these assumptions and explore practical strategies for AI integration, ultimately paving the way for a more efficient, innovative, and sustainable construction industry.
KEYWORDS:Artificial Intelligence (AI) in Construction, Saudi Construction Industry, AI Integration in Saudi Projects, Vision 2030 Saudi Arabia, AI Adoption Challenges
REFERENCES
1) Abdullah, R., & Fakieh, B. (2020, March 13). Health care employees’ perceptions of the use of artificial intelligence applications: Survey study. JMIR Publications, 22(5), e17620-e17620. https://doi.org/10.2196/17620
2) Abioye, S., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., Akinadé, O. O., & Ahmed, A. (2021, October 6). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Elsevier BV, 44, 103299-103299. https://doi.org/10.1016/j.jobe.2021.103299
3) Alateeq, M. M., P., F. R. P., & Ali, M. A. S. (2023, January 28). Construction site hazards identification using deep learning and computer vision. Multidisciplinary Digital Publishing Institute, 15(3), 2358-2358. https://doi.org/10.3390/su15032358
4) Altaie, M. R., & Dishar, M. M. (2024). Integration of artificial intelligence applications and knowledge management processes for construction projects management. Civil Engineering Journal, 10(3). https://doi.org/10.28991/CEJ-2024-010-03-06
5) Areef, S., Amouri, L., El-Haggar, N., & Moneer, A. (2021, January 1). Exploring the socio-economic implications of artificial intelligence from higher education student’s perspective. Science and Information Organization, 12(6). https://doi.org/10.14569/ijacsa.2021.0120641
6) Datta, S. D., Islam, M., Sobuz, M. H. R., Ahmed, S., & Kar, M. K. (2024, February 1). Artificial intelligence and machine learning applications in the project lifecycle of the construction industry: A comprehensive review. Elsevier BV, e26888-e26888. https://doi.org/10.1016/j.heliyon.2024.e26888
7) Hassan, O. (2020, January 1). Artificial intelligence, Neom and Saudi Arabia's economic diversification from oil and gas. Wiley, 91(1), 222-227. https://doi.org/10.1111/1467-923x.12794
8) Khayyat, M., & Alshaikhi, A. (2021). An investigation into the impact of artificial intelligence on the future of project management. ResearchGate.
9) Krishnan, S., & Krishnan, L. R. K. (2024). Impact of artificial intelligence on project delivery and implementation. Vellore Institute of Technology.
10) Mahmood, A., Al Marzooqi, A., El Khatib, M., & AlAmeemi, H. (2023). How artificial intelligence can leverage project management information system (PMIS) and data-driven decision-making in project management. International Journal of Business Analytics and Security (IJBAS).
11) Merdžanović, I., Vukomanović, M., & Ivandić Vidović, D. (2023). A comprehensive literature review of research trends of applying AI to construction project management. 6th IPMA SENET Project Management Conference.
12) Naggar, M., Alharbi, Z. A., Alanazi, A. M., Alsaiari, S. O., Alhemaidani, A. M., Alanazi, S. F., & Alanazi, M. M. (2023, August 2). Assessment of the perception and worries of Saudi healthcare providers about the application of artificial intelligence in Saudi health facilities. Cureus, Inc.. https://doi.org/10.7759/cureus.42858
13) Phaladi, M. G., Mashwama, X. N., Thwala, W. D., & Aigbavboa, C. O. (2022). A theoretical assessment on the implementation of artificial intelligence (AI) for an improved learning curve on construction in South Africa. IOP Conference Series: Materials Science and Engineering, 1218(1), 012003. https://doi.org/10.1088/1757-899X/1218/1/012003
14) Regona, M., Yiğitcanlar, T., Xia, B., & Li, R. Y. M. (2022, March 1). Opportunities and adoption challenges of AI in the construction industry: A PRISMA review. Springer Science+Business Media, 8(1), 45-45. https://doi.org/10.3390/joitmc8010045
15) Saudi Vision 2030. (2023, January 1). https://www.vision2030.gov.sa/en/vision-2030/overview
16) Sidawi, B., & Al‐Sudairi, A. A. (2014, January 1). The use of advanced computer-based management systems by large Saudi companies for managing remote construction projects. Elsevier BV, 77, 161-169. https://doi.org/10.1016/j.proeng.2014.07.013
17) Taboada, I., Daneshpajouh, A., Toledo, N., & Vass, T. (2023, April 17). Artificial intelligence enabled project management: A systematic literature review.
18) Vision 2030 Annual Report. (2023, May 2). https://annualreport.vision2030.gov.sa/?_id=homepage__i18n_ar&_type=page&slug=/&locale=ar
19) Weng, J. (2023). Putting intellectual robots to work - Implementing generative AI tools in project management.
20) Zabala-Vargas, S., Jaimes-Quintanilla, M., & Jimenez-Barrera, M. H. (2023). Big data, data science, and artificial intelligence for project management in the architecture, engineering, and construction industry: A systematic review. Buildings, 13(12), 2944. https://doi.org/10.3390/buildings13122944
21) القلاف, رائد و الصائغ, رباب و عجيمي, إسماعيل و الفلفل, ماجد. الاستفادة من الذكاء الاصطناعي للابتكار في إدارة المشاريع استكشاف الإمكانيات والتطبيقات "دراسة حالة التشوه البصري في أمانة مدينة جدة". المجلة العلمية للتجارة والتمويل, المجلد 44(3), 1-29.